You are here : Home > LEMMA team > Development of quantitative diffraction and imaging based techniques for scanning transmission electron microscopy

Benedikt Haas

Development of quantitative diffraction and imaging based techniques for scanning transmission electron microscopy

Published on 5 May 2017
Thesis presented May 05, 2017

Abstract:
In this work, different scanning transmission electron microscopy (STEM) techniques have been developed and applied to several material systems. The creation of novel materials and devices has been a backbone of society’s development and characterization methods are needed to investigate these materials in order to understand and improve them. With the advent of nanotechnology, electron microscopy has become an invaluable tool, as it is able to visualize the atomic structure of thin samples and produces a plethora of quantifiable signals.
In a first part, the numerous developments realized in this thesis are presented. Several STEM based techniques have been improved: scanning moiré fringes (SMF), nano-beam precession diffraction (NPED) and high-resolution STEM (HR-STEM). These developments allow for more accurate strain measurements, the quantitative mapping of electric fields and to realize accurate chemical profiles.
In a second part, the developed methods are applied to different material systems and compared to more classical techniques, like holography and differential phase contrast (DPC). In a II/VI solar cell structure the interface chemistry is determined from strain with atomic resolution. Very faint strain gradients that are vital for the topological insulator properties of HgTe are measured. Accurate two-dimensional strain maps are obtained of a SiGe transistor. Simultaneous strain and electric field maps of m-plane AlN/GaN reveal the influence of dislocations in the material. Core-shell type inversion domains are described for the first time in GaN nanowires. They were found in many samples grown by molecular beam epitaxy. Thanks to quantitative analysis the exact atomic structure of inversion domains in GaN is described and compared to simulations.

Keywords:
Electron microscopy, Strain, Electron scattering simulation, Electric field

On-line thesis