The principle of the tight-binding method is to
expand the wave functions of the electrons in a basis of atomic
orbitals. Indeed, the physics of silicon for example is dominated
(around the band gap) by the hybridization of the 3s, 3p
(and 3d) orbitals of the Si atoms (see Fig. 1). Since atomic
orbitals are localized in real space, their interactions are limited to
a few nearest neighbors. Computing these interactions with a
self-consistent ab initio method such as density functional
theory is, however, very expensive for a few thousand atoms. The
interactions between atomic orbitals are, nonetheless, usually close to
bulk interactions in such systems. In the semi-empirical tight-binding
framework, they are therefore adjusted to reproduce the bulk band
structures, then transferred to the nanostructures. This
approach is very efficient and accurate enough when the bonding does
not differ too much from the bulk reference.
Since the interactions between atomic orbitals are
limited to first, second or third nearest neighbors, the tight-binding
hamiltonian is "sparse" (most matrix elements are zero): This makes the
tight-binding method very appropriate for the design of "order N"
methods whose computational cost scales linearly with the number N
of atoms. For example, the cost of a matrix/vector product scales as N
for a sparse tight-binding hamiltonian instead of N^{2}
for a dense matrix. The optical properties of a million atom system can
therefore be computed within a few hours on a desktop computer.
As an atomistic approach, the tight-binding method
is well suited to the description of atomic-scale features such as
impurities, defects, electron-phonon coupling, etc... It can be used in
a multi-scale modelling strategy as a transition from ab initio
to large-scale finite element modelling (see Fig. 2).
The code is parallelized for OpenMP and MPI architectures. It can also
make use of graphics cards (GPU) accelerators. TB_Sim has received in 2012 the third prize in the Bull-Fourier contest (high performance computing) for its parallel performances.
Electronic structure and transport properties of Si nanotubes.
J. Li, T. Gu, C. Delerue and Y. M. Niquet,
Journal of Applied Physics 114, 053706 (2013).
Residual strain and piezoelectric effects in passivated GaAs/AlGaAs core-shell nanowires.
M. Hocevar, L. T. T. Giang, R. Songmuang, M. den Hertog, L. Besombes, J. Bleuse, Y. M. Niquet and N. T. Pelekanos,
Applied Physics Letters 102, 191103 (2013).
Highly defective graphene: A key prototype of two-dimensional Anderson insulators.
A. Lherbier, S. Roche, O. A. Restrepo, Y. M. Niquet, A. Delcorte and J. C. Charlier,
Nano Research 6, 326 (2013).
Performances of strained nanowire devices: Ballistic versus scattering-limited currents.
V. H. Nguyen, F. Triozon, F. D. R. Bonnet and Y. M. Niquet,
IEEE Transactions on Electron Devices 60, 1506 (2013).
Size dependence of the exciton transitions in colloidal CdTe quantum dots.
E. Groeneveld, C. Delerue, G. Allan, Y. M. Niquet and C. de Mello Donega,
Journal of Physical Chemistry C 116, 23160 (2012).
Carrier
mobility in strained Ge nanowires.
Y.
M. Niquet and C. Delerue,
J. Appl. Phys. 112,
084301 (2012).
Effects
of strains on the mobility in silicon nanowires.
Y.
M. Niquet, C. Delerue and C. Krzeminski,
Nano Letters 12,
3545 (2012).
Strain
state of GaN nanodisks in AlN nanowires studied by medium energy ion
spectroscopy.
D.
Jalabert, Y. CurÃ©, K. Hestroffer, Y. M. Niquet and B.
Daudin,
Nanotechnology 23,
425703 (2012).
Atomistic
Boron-doped graphene field-effect transistors: A route toward
unipolar characteristics.
P.
Marconcini, A. Cresti, F. Triozon, G. Fiori, B. Biel, Y. M. Niquet,
M. Macucci and S. Roche,
ACS Nano 6,
7942 (2012).
Gate-controllable
negative differential conductance in graphene tunneling
transistors.
V. H.
Nguyen, Y. M. Niquet and P. Dollfus,
Semicond. Sci. Technol. 27,
105018 (2012).
Transport
properties of graphene containing structural defects.
A.
Lherbier, S. M. M. Dubois, X. Declerck, Y. M. Niquet, S. Roche and
J. C. Charlier,
Physical Review B 86,
075402 (2012).
Detection
of a large valley-orbit splitting in silicon with two-donor
spectroscopy.
B. Roche, E.
Dupont-Ferrier, B. Voisin, M. Cobian, X. Jehl, R. Wacquez, M. Vinet,
Y. M. Niquet and M. Sanquer,
Physical Review Letters 108,
206812 (2012).
Impurity-limited
mobility and variability in gate-all-around silicon nanowires.
Y.
M. Niquet, H. Mera and C. Delerue,
Applied Physics Letters 100,
153119 (2012).
Fully
atomistic simulations of phonon-limited mobility of electrons and
holes in <001>, <110> and
<111>-oriented Si nanowires.
Y. M. Niquet,
C. Delerue, D. Rideau and B. Videau,
IEEE Transactions on
Electron Devices 59, 1480
(2012).
Band
offsets, wells, and barriers at nanoscale semiconductor
heterojunctions.
Y. M. Niquet and C. Delerue,
Physical
Review B 84, 075478 (2011).
Two-dimensional
graphene with structural defects: Elastic mean free path, minimum
conductivity, and Anderson transition.
A. Lherbier, S.
M. M. Dubois, X. Declerck, S. Roche, Y. M. Niquet and J. C.
Charlier,
Physical Review Letters 106,
046803 (2011).
Atomistic
modeling of electron-phonon coupling and transport properties in
n-type [110] silicon nanowires.
W. Zhang, C. Delerue, Y.
M. Niquet, G. Allan and E. Wang,
Physical Review B 82,
115319 (2010).
Charged
impurity scattering and mobility in gated silicon nanowires.
M.
P. Persson, H. Mera, Y. M. Niquet, C. Delerue and M.
Diarra,
Physical Review B 82, 115318 (2010).
The
structural properties of GaN/AlN core-shell nanocolumn
heterostructures.
K. Hestroffer, R. Mata, D.
Camacho, C. Lecrere, G. Tourbot, Y. M. Niquet, A.
Cros, C. Bougerol, H. Renevier and B.
Daudin,
Nanotechnology 21,
415702 (2010).
Accumulation
capacitance of narrow band gap metal-oxide-semiconductor
capacitors.
E. Lind, Y. M. Niquet, H. Mera and L. E.
Wernersson,
Applied Physics Letters 96,
233507 (2010).
Stark
effect in GaN/AlN nanowire heterostructures: Influence of strain
relaxation and surface states.
D. Camacho and Y. M.
Niquet,
Physical Review B 81, 195313
(2010).
Quantum
transport in graphene nanoribbons: effects of edge reconstruction
and chemical reactivity.
S. Dubois, A. Lopez-Bezanilla, A.
Cresti, F. Triozon, B. Biel, J.-C. Charlier and S. Roche,
ACS
Nano 4, 1971 (2010).
Elastic
strain relaxation in GaN/AlN nanowire superlattice.
O.
LandrÃ©, D. Camacho, C. Bougerol, Y. M. Niquet, V.
Favre-Nicolin, G. Renaud, H. Renevier and B.
Daudin,
Physical Review B 81, 153306
(2010).
Analysis
of strain and stacking faults in single nanowires using Bragg
coherent diffraction imaging.
V. Favre-Nicolin, F.
Mastropietro, J. Eymery, D. Camacho, Y. M. Niquet, B.
M. Borg, M. E. Messing, L. E. Wernersson, R. E.
Algra, E. P. A. M. Bakkers, T. H. Metzger, R. Harder
and I. K. Robinson,
New Journal of Physics 12, 035013
(2010).
Simulation,
modeling and characterization of quasi-ballistic transport in
nanometer sized field effect transistors: from TCAD to atomistic
simulation.
S. Roche, T. Poiroux, G. Lecarval, S.
Barraud, F. Triozon, M. Persson and Y. M.
Niquet,
International Journal of Nanotechnology 7, 348
(2010).
Application
of Keating's valence force field model to non-ideal wurtzite
materials.
D. Camacho and Y. M. Niquet,
Physica E 42,
1361 (2010).
The
structural properties of GaN insertions in GaN/AlN nanocolumn
heterostructures.
C. Bougerol, R. Songmuang, D.
Camacho, Y. M. Niquet, R. Mata, A. Cros and B.
Daudin,
Nanotechnology 20,
295706 (2009).
Chemically
induced mobility gaps in graphene nanoribbons: a route for upscaling
device performances.
B. Biel, F. Triozon, X. Blase and S.
Roche,
Nano Letters 9,
2725 (2009).
Chemical
functionalization effects on armchair graphene nanoribbon
transport.
A.
Lopez-Bezanilla, F. Triozon and S. Roche,
Nano
Letters 9, 2537
(2009).
Carbon
nanotube chemistry and assembly for electronic devices.
V.Derycke,
S.Auvray, J.Borghetti, C.-L.Chung, R.LefÃ¨vre,
A.Lopez-Bezanilla, K.Nguyen, G.Robert, G.Schmidt,
C.Anghel, N.Chimot, S.Lyonnais, S.Streiff,
S.Campidelli, P.Chenevier, A.Filoramo, M.
F.Goffman, L.Goux-Capes, S.Latil, X.Blase,
F.Triozon, S.Roche and J.-P.Bourgoin,
Comptes-Rendus
Physique 10, 330
(2009).
Multiscale
simulation of carbon nanotube devices.
C.
Adessi, R.Avriller,
X.Blase, A.Bournel, H.Cazin d?Honincthun,
P.Dollfus, S.FrÃ©gonÃ¨se, S.Galdin-Retailleau,
A.LÃ³pez-Bezanilla, C.Maneux, H.Nha Nguyen,
D.Querlioz, S.Roche, F.Triozon and
T.Zimmer,
Comptes-Rendus Physique 10,
305 (2009).
Anomalous
doping effects on charge transport in graphene nanoribbons.
B.
Biel, X. Blase, F. Triozon and S. Roche,
Physical
Review Letters 102,
096803 (2009).
Effect
of the chemical functionalization on charge transport in carbon
nanotubes at the mesoscopic scale.
A. Lopez-Bezanilla, F.
Triozon, S. Latil, X. Blase and S. Roche,
Nano
Letters 9,
940 (2009).
Band
structure effects on the scaling properties of [111] InAs nanowire
MOSFETs.
E.
Lind, M. Persson, Y. M. Niquet and L. E. Wernersson,
IEEE
Transactions on Electron Devices 56, 201
(2009).
Orientational
dependence of charge transport in disordered silicon nanowires.
M.
P. Persson, A. Lherbier, Y. M. Niquet, F. Triozon and S.
Roche,
Nano Letters
8, 4146
(2008).
Charge
transport in chemically doped 2D graphene.
A. Lherbier, X.
Blase, Y. M. Niquet, F. Triozon and S. Roche,
Physical
Review Letters 101, 036808 (2008).
Scanning
tunnelling spectroscopy of cleaved InAs/GaAs quantum dots at low
temperatures.
A. Urbieta, B. Grandidier, J. P.
Nys, D. Deresmes, D. StiÃ©venard, A. LemaÃ®tre, G.
Patriarche and Y. M. Niquet,
Physical Review B. 77, 155313
(2008).
Screening
and polaronic effects induced by a metallic gate and a surrounding
oxide on donor and acceptor impurities in silicon nanowires.
M.
Diarra, C. Delerue, Y. M. Niquet and G. Allan,
Journal
of Applied Physics 103, 073703 (2008).
Quantum
dots and tunnel barriers in InAs/InP nanowire
heterostructures:Electronic and optical properties.
Y.
M. Niquet and D. Camacho Mojica,
Physical Review B 77, 115316
(2008).
Quantum
transport length scales in silicon-based semiconducting
nanowires:Surface roughness effects.
A.
Lherbier, M. P. Persson, Y. M. Niquet, F. Triozon and
S. Roche,
Physical Review B. 77, 085301 (2008).
Transport
length scales in disordered graphene-based materials:Strong
localization regimes and dimensionality effects.
A.
Lherbier, B. Biel, Y. M. Niquet and S. Roche,
Physical
Review Letters 100, 036803 (2008).
Strain
and shape of epitaxial InAs/InP nanowires measured by grazing
incidence X-ray techniques.
J. Eymery, F. Rieutord, V.
Favre-Nicolin, O. Robach, Y. M. Niquet, L.
FrÃ¶berg, T. MÃ¥rtensson and L. Samuelson,
Nano Letters
7, 2596
(2007).
Effects
of a shell on the electronic properties of nanowire
superlattices.
Y.
M. Niquet,
Nano
Letters 7, 1105
(2007).
Quantum
communication with quantum dots spins.
C.
Simon, Y. M. Niquet, X. Caillet, J. Eymery, J.
P. Poizat and J. M. GÃ©rard,
Physical Review B 75, 081302(R)
(2007).
Ionization
energy of donor and acceptor impurities in semiconductor
nanowires:Importance of dielectric confinement.
M.
Diarra, Y. M. Niquet, C. Delerue and G. Allan,
Physical
Review B 75, 045301
(2007).
Electronic
and optical properties of InAs/GaAs nanowire
superlattices.
Y. M. Niquet,
Physical
Review B 74, 155304
(2006).
Electronic
structure of semiconductor nanowires.
Y. M. Niquet, A.
Lherbier, N. H. Quang, M. V. Fernandez-Serra, X.
Blase and C. Delerue,
Physical
Review B 73, 165319
(2006).